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Abstract: Effectively finding the odor source in a diffusive environment has numerous potential applications in environ-
mental monitoring and robotics. In this work, we explore adaptive sampling with Gaussian process regression to achieve
odor field mapping in a simulated environment. The simulation results show that compared to non-adaptive searches,
adaptive sampling performs better in modeling the odor field and the odor source location.

Keywords: Adaptive Sampling, Environmental Modeling, Chemical Plume Tracing

1. INTRODUCTION

The implementation of source seeking algorithms on
artificial systems have gained significant attention among
researchers due to its potential application ranging from
search and rescue missions, detection of hazardous mate-
rials in public areas, and environmental monitoring such
as in the case of a forest fire. The main goal of the source
seeking algorithm is to locate positions of a local mea-
surement maxima under a specific concentration field.
While several environmental conditions could be consid-
ered for this task, the focus of this paper is to rapidly
locate the position of an odor emitting source, using an
autonomous system.

The major challenge in the odor source localization
task, lies in the inherent spatial and temporal dynamics
of the odor substances under turbulent conditions. In
general, turbulent flow is the dominant flow under most
environments targeted for odor search tasks. The major
difficulty in navigating through such environment, lies in
the complex plume structure, where the odor concentra-
tion rapidly fluctuates in an unpredictable manner. This
results in situations where instantaneous odor concentra-
tion measurement, when the global property of the plume
structure is taken into account, may not correctly reflect
the concentration property of the specific location. To
overcome these issues, several approaches have been pro-
posed in the past[1], such as gradient based algorithm and
bio-inspired algorithm.

In this work, we focus on the on the use of the Gaus-
sian process regression to accomplish the localization
task. Gaussian process have have been used to model
various spatio-temporal processes. Their non-parametric
nature, allows the agent to search the environment with-
out extensive a priori information about the environmen-
tal characteristics. While Gaussian process regression has
been applied to gas distribution modeling in the past[2],
there are mainly two issues with the conventional ap-
proaches. Firstly, it uses a predefined sampling trajec-
tory similar to a lawnmower pattern, which reduces the
efficiency of the overall search. Secondly, most research
have focused on creating maps of the environment based
on the average odor concentration at each sampling lo-
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cation. However, research into the olfactory processing
of biological organisms have suggested that the nonlin-
ear relationship between the odor concentration and the
encoded information plays an important role in capturing
relevant information about the location of the emission
source[3]. To overcome these issues, in this work we first
implement an adaptive sampling strategy, then apply a
nonlinear filter based on receptor binding. In this work
we focus on the former part.

2. METHODS
2.1. Gaussian Process Regression

Gaussian Process Regression can be used to create a
Gaussian probability distribution of the phenomenon of
interest using the collected training data Xn. The prob-
ability distribution f(Xn) is characterized using a mean
function m(Xn) and a covariance function K(Xn, Xn).

f(Xn) ∼ N [m(Xn),K(Xn, Xn)] (1)

Given an input position position Xn = (x1, x2...xn),
and Gaussian noise ϵ ∼ N [0, σ2

nIn], the observed value
y can be expressed as follows.

y = f(Xn) + ϵ (2)

If we assume that the mean function of the prior dis-
tribution is set to a constant zero m0(x) = 0, and the ob-
served value is y = [y1, y2, ..., yn], the conditional poste-
rior mean function m̂(x) and covariance function v̂(x, x′)
for a testing location x can be expressed as follows.

m̂(x) = kn(x)
T(Kn,n + σ2In)

−1y (3)
v̂(x, x′) = k(x, x′)

−kn(x)
T(Kn,n + σ2In)

−1kn(x
′) (4)

In the above equation, k(x, x′) is the kernel function,
and kn(x) follows Eq. (5).

kn(x) = (k(x1, x), ..., k(xn, x))
T (5)

2.2. Gaussian Process Upper Confidence Bound
The acquisition function plays an important role in se-

lecting the most effective points to sample from the target
environment. In this work, we have selected the Gaus-
sian Process Upper Confidence Bound(GP-UCB) as the
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Table 1 The RMSE and the Euclidean distance for three
different sampling methods

RMSE Euclidean distance (px)
Lawnmower 4.66× 10−2 31
Constant beta 3.69× 10−2 10
Variable beta 2.94× 10−2 2

acquisition function. GP-UCB is capable of balancing
out the ratio between exploitation and exploration by uti-
lizing an information-theoretic criterion as shown in Eq.
(6) where X represents the possible search location.

xnext = argmax
x∈X

[µ+ βσ2] (6)

The ratio between exploitation and exploration can be
tuned using the parameter β. For this work, we have se-
lected two types of ways to calculate β. The first type
keeps β at a constant value regardless of iteration num-
ber, which means that the ratio between exploitation and
exploration is kept constant throughout the search. The
second type sets β as β = k/n, where k is a constant
value parameter, and n is the number of iteration at the
point of calculation. This effectively increases the level
of exploitation as the number of sampling iteration grows.

To implement GP-UCB into odor source localization
task, the sampling location is selected within a certain
radius from the current agent position.

2.3. Plume Model
To test the Gaussian Process Regression method in

an in-silico model, a odor plume model in [4] was uti-
lized. In the model, the mean stationary concentration
field for an odor source located at position r0 was charac-
terized by emission rate R, particle lifetime τ , isotropic
effective diffusivity D, and advection current V . In
the two-dimensional field, an analytical solution for the
advection-diffusion equation can be obtained using the
following equations.

c(r|r0) =
R

2πD
e

−(y−y0)V
2D K0(

|r − r0|
λ

) (7)

λ =

√
Dτ

1 + V 2τ
4D

(8)

3. RESULTS
To test whether the GP-UCB algorithm could be ap-

plied to an odor source localization task, we applied
three different algorithms to a simulated plume model
from 2.3. The three algorithms were lawnmower, con-
stant beta, and variable beta. Lawnmower selects evenly
spaced points from the map and moves in a predefined
trajectory. Constant beta and variable beta uses GP-
UCB from 2.2, and moves the mobile sensor accord-
ing to the acquisition function. In all cases, the pa-
rameters for the simulated plumes were set as follows,
R = 1, τ = 1000, D = 0.002, V = 0.5. The starting
position was (35,2) and the source position was (8,12).

Fig. 1 Results for the simulated odor plume(a), and
the reconstructed concentration map using the GP
model(b). The sampling locations chosen by the vari-
able beta method is shown in (c).

The result using the variable beta method are shown in
Fig. 1. The odor concentration map from the simulated
plume model is shown in Fig. 1(a). The mean concen-
tration map generated from the learned GP model after
30 iterations is shown in Fig. 1(b), and the points that
were sampled during the search are shown in Fig. 1(c).
In Table 1, the RMSE between the simulated plume and
the GP model, as well as the euclidean distance between
each points of maxima are shown.

4. CONCLUSION
In this work, we have applied GP-UCB to the odor

source localization task. The simulation results show
the advantages of using adaptive sampling with GP-UCB
compared to predefined trajectory. While the result is
limited due to the differences between the ideal simula-
tion and the real environment, further testes will be con-
ducted under realistic environments in the future.
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